
Godot: All the Benefits of Implicit and Explicit
Futures

Kiko Fernandez-Reyes Dave Clarke Ludovic Henrio
Einar Broch Johnsen Tobias Wrigstad

Godot: Artifact Abstract

This artifact contains an implementation of data-flow futures in terms of control-
flow futures, in the Scala language. In the implementation, we show microbench-
marks that solve the three identified problems in the paper:

1. The Type Proliferation Problem (Section 2, Problems Inherent in Explicit
and Implicit Futures),

2. The Fulfilment Observation Problem (Section 2, Problems Inherent in Ex-
plicit and Implicit Futures), and

3. The Future Proliferation Problem (Section 2, Problems Inherent in Explicit
and Implicit Futures)

This artifact can be seen as an extension to Section 5.2. Notes on Implementing
Godot. However, it is out of the scope of the artifact to modify the Scala
compiler to perform implicit delegation (Section 5.1 Avoiding Future Nesting
through Implicit Delegation), which allows asynchronous tail-recursive calls to
run in constant space. This can be solved by either using an advanced macro
system or updating the Scala compiler (Section 5.2. Notes on Implementing
Godot).

This artifact shows an implementation of the formal semantics of the paper
using the well-established programming language Scala. The reader can:

• Run the tests by typing sbt test (in the godot folder), which tests type
checking rules and runtime semantics described in the paper. This will
run 18 tests that exercise different features of the type system while also
checking that well-typed programs work as expected.

• Run two microbenchmarks in the form of well-known algorithms (factorial
and fibonacci) implemented using the future styles discussed in the paper,
that highlight the difference between control-flow and data-flow futures.

• Run a simulation of a proxy service using control-flow futures parame-
terised by data-flow futures which allows inner data-flow computation to

1

asynchronously delegate work to another worker, without mimicking the
communication structure at the type level, mixing both styles of futures
(control- and data-flow futures).

• Read the Implementation details section, which explains how data-flow
futures are integrated in the Scala language, and is aimed at researchers
who want to use our ideas in implementations of their own, or want to see
a concrete example of the ideas in the paper integrated in a real program-
ming language.

• Check the mapping of combinators from the formal semantics to the im-
plementation, Common API section (or page 8 from the PDF documen-
tation). For example, the paper spawns a task (with a future) by call-
ing async expr, and the implementation mimics the semantics by calling
Future { expr }.

• Check the restrictions of the current implementation (Section Restric-
tions).

All of these points are outline in the next section.

(The latest version of the paper can be found here)

NOTE. We recommend that the reader looks at the HTML version of the
README file, since it is better formatted and the links point to PDF sections,
automatically. One can find the HTML version in the downloaded artifact,
inside the zip file. If the reader prefers to read a PDF file, it is still better to
download the artifact and read the instructions included there. It is the same
content, but the PDF links will open up the submitted version of the paper.

Description

The paper presents two calculi, one which allows language writers to encode
control-flow futures into a language that has data-flow futures (Section 4.2 Flow-
Fut: Primitive Data-Flow Futures and Encoded Control-Flow Futures), and one
that allows current control-flow futures to encode most of the functionality of
data-flow futures (Section 4.3 FutFlow: Primitive Control-Flow Futures and
Encoded Data-Flow Futures).

This artifact shows how one can encode data-flow futures using control-flow
futures, in the Scala language. There are some implementation details that we
cannot encode directly. These are mentioned in the paper (Section 5.2 Notes on
Implementing Godot) and explained in this document (Section Restrictions).

Table of Contents:

0. Folder Structure
1. Prerequisites (installation instructions)

2

i) Installing Scala on OSX
ii) Installing Scala on Linux
iii) Installing Scala on Windows
iv) Using a provisioned Virtual Machine

2. Installing Library Dependencies
3. Implementation in Scala

i) Unit tests,
ii) library code,
iii) micro-benchmarks,
iv) start the REPL to write your own programs.

4. Restrictions

0. Folder Structure

The folder structure of this artifact is as follows:� �
1 .
2 |----- README.html
3 |----- README.pdf
4 |----- assets
5 | |----- Java8Installation.png
6 | |----- fonts
7 | |----- pandoc.css
8 | |----- submitted -version.pdf
9 |

10 |----- godot
11 |----- build.sbt
12 |----- examples
13 | |----- Microbenchmark.scala
14 | |----- Miscellaneous.scala
15 | |----- ProxyService.scala
16 |
17 |----- project
18 | |----- build.properties
19 | |----- plugins.sbt
20 |
21 |----- src
22 |----- main
23 | |----- scala
24 | |----- godot
25 | |----- imperative
26 | |-----

↪ ImperativeFlow.scala
27 |----- test
28 |----- scala
29 |----- godot
30 |----- imperative

3

31 |----- AsyncTest.
↪ scala

32 |----- BlockingTest
↪ .scala

33 |----- LiftingTest.
↪ scala

34 |-----
↪ MonadicOperations
↪ .scala� �

The instructions are in the README.html and README.pdf. The assets folder
contains assets for the HTML version and the submitted paper. If you are
reading the HTML version, the links to the paper direct you to the appropriate
page. If you are using the PDF version, the links only point to the paper. The
implementation can be found under the project folder named godot.

1. Prerequisites

The library is written in the Scala programming language and has the following
dependencies:

• Java 8
• Scala 2.12
• sbt

Below you can find information on how to install these dependencies in OSX,
Linux and Windows.

Installing Scala on OSX

If you have brew installed, just type the following command, which installs all
dependencies:� �

1 brew update
2 brew install scala sbt� �

If you do not have brew installed and you would rather perform a manual instal-
lation process, please follow the documentation from the official website.

Installing Scala on Linux

Install Java 8 (JDK) from the command line as follows:� �
1 sudo add-apt-repository ppa:webupd8team/java
2 sudo apt-get update
3 sudo apt-get install oracle-java8-installer� �

4

https://www.scala-lang.org/download/

Download and install Scala:� �
1 wget https://downloads.lightbend.com/scala/2.12.8/scala -2.12.8.

↪ deb
2 sudo dpkg -i scala -2.12.8.deb� �

Install sbt building tool:1� �
1 echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /

↪ etc/apt/sources.list.d/sbt.list
2 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --

↪ recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823
3 sudo apt-get update
4 sudo apt-get install sbt� �

If you have troubles installing any of the dependencies, I recommend to follow
the installation instructions from this YouTube video.

Installing Scala on Windows

Visit the official website, click on the radio button Accept License Agreement,
and download the executable file for Windows x64, as shown in the image below.
Then install the executable.

Install the sbt building tool by clicking in this link and installing the downloaded
file sbt-1.2.8.msi.

If you have troubles installing Java 8 and Scala, I recommend to follow the steps
from this YouTube video.

Using a provisioned Virtual Machine

This artifact contains a Virtual Machine (VM) named Godot-Artifact.ova.

You can use your favorite virtualisation software. We have tested this VM using
Virtual Box.

After importing the VM, start it and login to the VM with the following cre-
dentials:� �

1 user: vagrant
2 password: vagrant� �

Upon login, a terminal will pop up and receive you under the godot project
folder.

1Command taken from official documentation website: https://www.scala-
sbt.org/1.0/docs/Installing-sbt-on-Linux.html

5

https://www.youtube.com/watch?v=uYcSYCGITeU
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://piccolo.link/sbt-1.2.8.msi
https://www.youtube.com/watch?v=haMI6uoMKs0
https://www.virtualbox.org/

Figure 1: Java 8 Instalation Agreement

Figure 2: VM User Screen

6

Figure 3: VM Terminal

2. Installing Library Dependencies

At this step, you should have Java 8, Scala and the sbt building tool installed.
To install the project dependencies, run the following command from inside the
godot folder:� �

1 sbt� �
After sbt has download all the dependencies, exit the sbt program by typing:2� �

1 exit� �
After the dependencies have been installed, you will be able to look at some of
the programs that we can write using data-flow explicit futures, and create your
own programs from the Scala REPL.

3. Implementation in Scala

This section contains the following information:

• the library code,

• where to find unit tests,
2Every time that you see the use of sbt <command>, where <command> is another instruc-

tion, it means that you need to exit sbt and type that from the terminal, not from inside the
sbt program.

7

• micro-benchmarks,

• start the REPL to write your own programs.

Library Code

The library code can be found in the following folder:� �
1 src/main/scala/godot/imperative/ImperativeFlow.scala� �

The main contribution of the implementation is:

• encoding of data-flow futures using control-flow futures,
• the encoding type checks, and lifts concrete values to data-flows (when

required)
• no matter how many asyncS(asyncS(...)) computations the developer

spawns, by construction, the developer gets a single data-flow future, rep-
resented by the type Flow[T].

This implementation also shows that:

• To encode the collapsing rule, the type system needs to be modified3,
• since parametric types cannot be parametrized by data-flow futures, a

type system similar to DeF (Section 3.2 Data-flow Explicit Futures) can
easily be implemented in Scala.

Common API

To make the implementation more natural to the Scala community, we have
renamed some of the functions (methods) from the paper. Below you can find
a table with the assigned name from the paper and the name in the implemen-
tation. All of the functions have been implemented in the file src/main/scala/
↪ godot/imperative/ImperativeFlow.scala, under the singleton object Flow:

Name in the paper Implementation Name
async { expr } Future { expr }
async*{ expr } Flow { expr } or asyncS { expr }

get(e) Await.result(e, 1000.millis)
get*(e) getS(e)

then(e1, e2) e1.map(e2)4

then*(e1, e2) e1.map(e2)
return e return e5

♦𝑒 lift(e)

3This affects parametric polymorphism, where the current implementation cannot deal with
data-flow futures as type variables, explained in the paper Section 8.2. Notes on Implementing
Godot

8

Name in the paper Implementation Name
match(x: e1, x: e2, e3) Scala pattern matching

forward e NOT IMPLEMENTED (see Restrictions, Implicit
delegation)

forward*e NOT IMPLEMENTED (see Restrictions, Implicit
delegation)

Now, we suggest the reader to look at the implementation code (found here)
while reading the implementation details.

Implementation details

Data-flow futures have been implemented using a singleton object and trait,
named Flow. This is a more object-oriented approach than the calculus from
the paper, but it fits better in the Scala eco-system. We use case classes Value
and Diamond to extend the Flow trait and to encode whether non-future values
are lifted to data-flow futures or whether future values are lifted to flows, respec-
tively. This encoding allows one to write the following code (which resembles
programming with Futures in Scala):� �

1 Flow { computation() }.getS� �
One can also allow to stick to the functional notation from the paper, so that
you can write your code as follows:� �

1 getS(asyncS { computation() })� �
The pattern matching from the paper has been encoded using match in Scala,
and closely follows the calculus except that we polymorphically dispatch to the
appropriate case class.

The implicit lifting from the paper is encoded using implicit functions in Scala
(functions liftToFlow). This implicit lifting, by construction, cannot create Flow
↪ [Flow[T]] types, which would be unsound. However, a developer can write
a function that returns Flow[Flow[T]] and the implicit lifting will lift twice a
value, creating a mismatch between the type and its runtime representation.
This is also explained under the Type collapsing rule, Restrictions section.

Finally, there is one point where the implementation differs from the paper,
which has to do with the R-FlowCompression [link to rule], which affects the
encoding of the thenS combinator (named map in the implementation). This is

4The Scala notation for functions is not the same as used in the paper. For more information
on how to write higher-order functions in Scala, please visit this link.

5The return keyword needs to be used with care, as describe in a blog post from Rob
Norris [here], Community Representative from the Scala Center Advisory Board

9

godot/src/main/scala/godot/imperative/ImperativeFlow.scala
https://docs.scala-lang.org/tour/higher-order-functions.html#inner-main
https://tpolecat.github.io/2014/05/09/return.html
https://www.scala-lang.org/blog/2019/03/18/announcing-new-community-representative.html

due to not being able to handle implicit delegation (Section 5.1), discussed in
Section 5.2 Notes on Implementing Godot. More concretely the deviation is
reflected in flatMap construct inside the Diamond case class (the Value case class
presents no issues). The main deviation is that if one tries to perform� �

1 thenS(flow, fun: T => Flow[T])� �
where the flow is a Diamond(fut), then we perform a future chaining operation
that flattens the returned Future (we perform a flatMap operation instead of a
map operation). If the result of the function application returns a lifted, non-flow
value, we lift it to a Diamond; if it is a lifted control-flow future, then we just
return it.

Unit tests

The tests are located in:� �
1 src/test/scala/godot/imperative/AsyncTest.scala
2 src/test/scala/godot/imperative/BlockingTest.scala
3 src/test/scala/godot/imperative/LiftingTest.scala
4 src/test/scala/godot/imperative/MonadicOperations.scala� �

To compile and run the tests type the following line from inside the folder godot:� �
1 sbt test� �

The output should be similar to this:� �
1 [info] Compiling 1 Scala source to /home/vagrant/Desktop/Godot-

↪ Artifact/godot/target/scala -2.12/test-classes ...
2 [info] Done compiling.
3 [debug] Test run started
4 [debug] Test godot.imperative.LiftingTest.

↪ testLiftingFutureValueReturnsFlow started
5 [debug] Test godot.imperative.LiftingTest.

↪ testLiftingFutureValueReturnsFlow finished, took 0.003
↪ sec

6 [debug] Test godot.imperative.LiftingTest.
↪ testLiftingAFutFlowReturnsASingleFlow started

7 [debug] Test godot.imperative.LiftingTest.
↪ testLiftingAFutFlowReturnsASingleFlow finished, took
↪ 0.007 sec

8 [debug] Test godot.imperative.LiftingTest.
↪ testImplicitLiftingOfFutureValueToFlow started

9 [debug] Test godot.imperative.LiftingTest.
↪ testImplicitLiftingOfFutureValueToFlow finished, took
↪ 0.001 sec

10

10 [debug] Test godot.imperative.LiftingTest.
↪ testImplicitLiftingOfValueToFlow started

11 [debug] Test godot.imperative.LiftingTest.
↪ testImplicitLiftingOfValueToFlow finished , took 0.0 sec

12 [info] ScalaTest
13 ...
14 [info] Passed: Total 18, Failed 0, Errors 0, Passed 18
15 [success] Total time: 1 s, completed Mar 25, 2019 8:48:04 PM� �

Micro-benchmarks

There are a limited number of microbenchmarks:

• Microbenchmarks (in godot/examples/Microbenchmarks.scala)
• Proxy Service (in godot/examples/ProxyService.scala)
• Miscellaneous (in godot/examples/Miscellaneous.scala)

Each microbenchmark section contains an short explanation and identifies which
problems it solves.

Microbenchmarks

There are two microbenchmarks, factorial and fibonacci.

Factorial

An asynchronous tail-recursive function for calculating the factorial of a num-
ber cannot be typed unless the developer introduces constructs that remove the
nested of futures, such as the blocking (get) or awaiting (Await.ready) opera-
tions. Furthermore, the developer needs to explicit lift a value to a future, so
that there is a uniform return type. For example, one can type the factorial
function using Futures as follows.

Click here to see the raw code.� �
1 import scala.concurrent.ExecutionContext.Implicits.global
2 import scala.concurrent.duration._
3 import scala.concurrent.{Await, Future}
4

5 // Alternative 1
6 def factorialFuture(n: Int, accumulator: Int): Future[Int] = {
7 if (n == 1) Future.successful(accumulator)
8 else {
9 val result = factorialFuture(n - 1, n * accumulator)

10 val finalResult = Await.result(result, 1000.millis)
11 Future.successful(finalResult)
12 }

11

godot/examples/Microbenchmarks.scala
godot/examples/ProxyService.scala
godot/examples/Miscellaneous.scala
godot/examples/Microbenchmark.scala

13 }� �
There is a second alternative, which requires the explicit introduction of flatMap
in each iteration, so that it can flatten the nested future into a single future.� �

1 // Alternative 2
2 def factorialFutureAlt(n: Int, accumulator: Int): Future[Int] =

↪ {
3 if (n == 1) Future.successful(accumulator)
4 else Future(factorialFutureAlt(n - 1, n * accumulator)).

↪ flatMap(identity _)
5 }� �

With the usage of data-flow futures, the function can be written as follows:� �
1 import godot.imperative._
2 import godot.imperative.Flow._
3 import scala.concurrent.ExecutionContext.Implicits.global
4 import scala.concurrent.duration._
5 import scala.concurrent.{Await, Future}
6

7 def factorial(n: Int, accumulator: Int): Flow[Int] = {
8 if (n == 1) accumulator
9 else asyncS(factorial(n - 1, n * accumulator))

10 }� �
The if branch automatically lifts the accumulator to a Flow[Int] and the else
branch flattens immediately the possible nested Flow[Flow[Int]].

With the use of data-flow futures, we tackle the The Type Proliferation Problem
(Section 4.4, Integrating Data-Flow and Control-Flow Futures and Delegation),
as the data-flow futures hide their internal communication structure, and The
Future Proliferation Problem (Section 4.4, Integrating Data-Flow and Control-
Flow Futures and Delegation), as the data-flow future structure guarantees that
there will be no falsely fulfilled future.6

To test this program, follow the instructions from the Section Test existing
programs.

Fibonacci

The Fibonacci code follows the same pattern and can be found in the same file
as the factorial example.

Click here to see the raw code.
6This implementation partly solves The Future Proliferation Problem, as it solves falsely

fulfilling a future but does not introduce the forward nor runs in constant space. As mentioned
before, this requires the use of an advanced macro system or updating the Scala compiler,
which is outside of the scope of the artifact.

12

godot/examples/Microbenchmark.scala

Proxy Service

This program is similar to the one explained in the paper, simulating the work
of actors, using tasks instead. The Main class is the main entry point. It creates
a load balancer and “sends” messages to it, returning immediately control-flow
futures containing data-flow futures, i.e., Future[Flow[T]]. The outermost fu-
ture denotes whether the load balancer has found an idle worker and successfully
delegated the job; the innermost (data-flow) future denotes the result of run(
↪ job). To make things simple, we will just send jobs to idle workers, map on
the (control-flow) futures to get to their inner (data-flow) futures and sum all
their results, until we have a final single value.� �

1 class Main extends App {
2 var list = new ListBuffer[Future[Flow[Int]]]()
3 val proxy = new LoadBalancer()
4 val listOfFlows = for (i <- 0 until 1000) {
5 list += proxy.run(new Computation())
6 }
7 val flowList = list.map(Await.result(_, 1000.millis))
8 val actual = flowList.foldLeft(0)(_ + _.getS)
9 println(s"Running the sum of the asynchronous jobs: ${actual}

↪ (check result = ${42 * 1000})\n\n")
10 }� �

The message (class Computation) is a “costly” computation:� �
1 // Costly computation
2 class Computation {
3 def start(): Int = 42
4 }� �

The load balancer passes the work to a worker thread and returns the handle
to this work, a control-flow future (highlighted in light blue7).� �

1 class LoadBalancer() {
2 val workers = List(new Worker(), new Worker(), new Worker(),

↪ new Worker())
3 val turn = new AtomicInteger(0)
4

5 def run(job: Computation): Future[Flow[Int]] = {
6 val currentTurn = turn.get()
7 turn.weakCompareAndSet(currentTurn , (currentTurn + 1) %

↪ workers.size)
8 Future(this.workers(currentTurn).run(job))
9 }

10 }
11

12 class Worker(){

7Not shown in the pdf version

13

13 def run(job: Computation): Flow[Int] = asyncS { job.start() }
14 }� �

With the use of data-flow futures, we tackle the The Type Proliferation Problem,
as the data-flow futures hide their internal communication structure, and The
Fulfilment Observation Problem, as it allows to observe the current stage of
futures computations, when necessary (Section 4.4, Integrating Data-Flow and
Control-Flow Futures and Delegation)

If we were to use control-flow futures, instead of data-flow futures, the com-
munication with the load balancer creates a future, which contains a nested
future, the one that the load balancer produces when it communicates with
the worker thread; the return type would be Future[Future[Int]]. Any further
asynchronous call would be reflected in the types.� �

1 asyncS{ proxy.run(new Computation) } :: Future[Future[Int]]� �
To test this program, follow the instructions from the Section Test existing
programs. (This program reproduces these instructions when it is executed, so
that the reader does not need to go back and forth between the documentation
and the terminal.)

Click here to see the raw code.

Miscellaneous

Data-flow futures defined the common map and flatMap operations. This allows
developers to use the common for-comprehension notation. One simple example,
taken from godot/examples/Miscellaneous.scala:� �

1 val flow = for {
2 flowInt <- asyncS { 42 }
3 flowString <- flowInt.map(_.toString())
4 } yield flowString� �

Use this example as inspiration for writing your own programs.

Start the REPL to write your own programs

There are two ways to play with the library:

1. Test existing programs
2. Write your own program

14

godot/examples/ProxyService.scala
godot/examples/Miscellaneous.scala

Test existing programs

From the godot project folder, fire up the REPL:� �
1 sbt console� �

inside the godot folder. Start typing:� �
1 :load examples� �

and press the TAB button two times, so that it autocompletes the full-path to
the examples library, which in my case is:� �

1 /home/vagrant/Desktop/Godot-Artifact/godot/examples/� �
Then choose a file to load. In this case, lets play with the ProxyService.scala:� �

1 :load /home/vagrant/Desktop/Godot-Artifact/godot/examples/
↪ ProxyService.scala� �

This will print something similar to:� �
1 Loading /home/vagrant/Desktop/Godot-Artifact/godot/examples/

↪ ProxyService.scala...
2 import java.util.concurrent.atomic.AtomicInteger
3 import godot.imperative._
4 import godot.imperative.Flow._
5 import scala.collection.mutable.ListBuffer
6 import scala.concurrent.ExecutionContext.Implicits.global
7 import scala.concurrent.Promise
8 defined class Computation
9 defined trait Runnable

10 defined class Worker
11 defined class LoadBalancer
12 defined class Main� �

Run the example by typing:� �
1 Main.main(Array())� �

Write your own program

From the godot project folder, fire up the REPL:� �
1 sbt console� �

Now you need to import the libraries dependencies

15

� �
1 // Load data-flow library
2 import godot.imperative._
3 import godot.imperative.Flowing._
4

5 // Load Execution Context and Future library
6 import scala.concurrent.ExecutionContext.Implicits.global
7 import scala.concurrent._� �

From this point on, you can write your own programs, e.g.:� �
1 // Fire up an asynchronous computation
2 val f = asyncS(34)� �

4. Restrictions

This implementation mimicks the semantics of the paper, even when this may
not be the most efficient implementation. There are two things that this imple-
mentation cannot handle:

1. Implicit delegation

As mentioned in the paper Section 5.1, implicit delegation is not easy to
add without introducing new abstractions – which adds overhead – or
changing the compiler (mentioned in last paragraph of Section 5.2. Notes
on Implementing Godot)

Example:� �
1 def test(): Flow[Int] = {
2 asyncS {
3 asyncS { 42 }
4 }
5 }� �

The asyncS construct creates a promise that could be passed to the inner
asyncS, so that we avoid the creation of two promises.

2. Type collapsing rule8

By construction, the library will not create a Flow[Flow[T]]. However,
the implicit lifting can be tricked by a developer to nest data-flow futures,
e.g.:� �

1 def id(x: Flow[T]): Flow[Flow[T]] = x� �
8In the paper, this is stated as follows:

In the other direction, it is slightly more involved as the type system of the control-
flow future language must implement a form of type collapse rule.

16

This function returns a nested data-flow, but its runtime representation
cannot capture this fact – it is non-sensical for data-flow futures to have
nested data-flow futures. To completely rule out this situation, one would
need to modify the compiler to forbid this (Section 5.2. Notes on Imple-
menting Godot).

17

	Godot: Artifact Abstract
	Description
	0. Folder Structure
	1. Prerequisites
	Installing Scala on OSX
	Installing Scala on Linux
	Installing Scala on Windows
	Using a provisioned Virtual Machine

	2. Installing Library Dependencies
	3. Implementation in Scala
	Library Code
	Unit tests
	Micro-benchmarks
	Start the REPL to write your own programs

	4.

